
X3T11/96-

X3T11/Project xxxx-D/REV 0.1

HIGH-PERFORMANCE PARALLEL INTERFACE -
Scheduled Transfer

(HIPPI-ST)

November 15, 1996

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT: This standard specifies a data tranfer protocol that uses small control messages to pre-
arrange data movement. Buffers are allocated at each end before the data transmission, allowing
full-rate, non-congesting data flow between the end devices. The control and data may use different
physical media, or may share a single physical medium. Procedures are provided for moving data
over HIPPI and other media.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards
Committee X3. As such, this is not a completed standard. The contents are actively being modified
by X3T11. This document is made available for review and comment only. For current information
on the status of this document contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Carl Zeitler (X3T11 Vice-Chairman)
Distributed Processing Technology IBM Corporation, MS 9440
140 Candace Drive 11400 Burnet Road
Maitland, FL 32751 Austin, TX 78758
 (407) 830-5522 x348, Fax: (407) 260-5366 (512) 838-1797, Fax: (512) 838-3822
 E-mail: cummings_roger@dpt.com E-mail: zeitler@ausvm6.vnet.ibm.com

Don Tolmie (HIPPI-ST Technical Editor)
Los Alamos National Laboratory
CIC-5, MS-B255
Los Alamos, NM 87545
 (505) 667-5502, Fax: (505) 665-7793
 E-mail: det@lanl.gov

working draft - HIPPI-ST Rev 0.1, 11/15/96

ii

Comments on Rev 0.1

This is a preliminary document undergoing lots
of changes. Many of the additions are just
place holders, or are put there to stimulate
discussion. Hence, do not assume that the
items herein are correct, or final – everything is
subject to change. This page tries to outline
where we are; what has been discussed and
semi-approved, and what has been added or
changed recently and deserves your special
attention. This summary relates to changes
since the previous revision. Also, previous
open issues are outlined with a single box, new
open issues ones are marked with a double bar
on the left edge of the box.

Changes are marked with change bars in the
margin. Minor changes, e.g., capitalization or
spelling, did not warrant a change bar unless
there were other substantive changes in the
paragraph. The list below just describes the
major changes, for detail changes please
compare this revision to the previous revision.

Please help us in this development process by
sending comments, corrections, and
suggestions to the Technical Editor, Don
Tolmie, of the Los Alamos National Laboratory,
at det@lanl.gov. If you would like to address
the whole group working on this document,
send the STU to hippi@network.com.

1. Made major changes to the first paragraph
of the Foreword, Introduction, and Scope.
If you want to see what changed, it is best
to compare to an old copy.

2. Global changes that are not marked with
margin bars include: Changed "control
Message" to "Control Operation".
Changed "Message" to "STU", i.e.,
Scheduled Transfer Unit. Changed
"M_count" to "S_count. Changed
"operation" and "slot" to always begin with
a capital letter.

3. In the Introduction, deleted some of the
bullet items, and modified others.

4. Page 1, Scope – changed the bullet items
that are marked.

5. 3.1.3, Changed the definition of "Control
Channel" by deleting the words "e.g.,
Scheduled Headers".

6. 3.1.5, Changed the definition of "Final
Destination" by changing "equipment" to
"end device", and changed "...payload

portion of the micropackets" to
"...payload".

7. 3.1.7, changed the definition of Operation
from "...e.g., Request_To_Send, defined
in a 32-byte Scheduled Transfer Header."
to "...i.e., a Control Operation or the data
movement specified in an STU.".

8. 3.1.9, changed the definition of Originating
Source from "...equipment..." to "...end
device..." and from "...payload portion of
the micropackets." to "...payload.".

9. 3.1.12, added the definition for Scheduled
Transfer Unit.

10. 3.1.15, changed the definition of Virtual
Connection from "...full-duplex..." to "...bi-
directional...".

11. In 3.3, added acronyms for MPI and STU.

12. In 4.1, deleted the last sentence of the first
paragraph about the control and data
channels using different or same media.

13. In almost a global change, changed "...32-
byte Schedule Header..." to "...Schedule
Header...". Changed "Scheduled Header"
to "Schedule Header" throughout the
document. Changed "user data", and
other similar variants to "data payload".

14. In figure 1, changed the titles from "In end
device.." to "Device...".

15. The first paragraph of 4.2 was mostly lifted
from 4.3 of the previous revision. The last
two sentences were added to explain the
new items in figure 2.

15. Added a picture of an STU and Control
Operation to figure 2.

16. The rest of 4.2 is all new, as well as figure
3. This is an attempt to better define what
we are talking about.

17. 4.3 is text that was previously 4.2; with
changes. In the first paragraph, the next
to last sentence was changed from "A
path..." to "A bi-directional path..." and
from "...Originating Source and Final
Destination." to "...end devices.". In the
second paragraph, 1st sentence, changed
"Since..." to "Once...", changed in the next
to last sentence from "...move multiple..."
to "...carry multiple...". Added the last
sentence about this protocol doesn't
handle network resource reservations.

working draft - HIPPI-ST Rev 0.1, 11/15/96

iii

18. 4.3.1, 1st paragraph, the last sentence
was added to reference where in the
model we are describing. In the 2nd
paragraph, replaced the second sentence
"Once established, the Virtual Connection
is accessed as shown in figure 3 by the
tupple "his Port", "my Port", and "my
Key".".

19. 4.3.2, changed the last words in the
paragraph from "...is ignored." to "...shall
not be executed.".

20. 4.3.3, changed the 1st sentence from
"Ports are logical..." to "Ports identify
higher-layer logical...". Changed the 3rd
sentence from "...a well-known port, e.g., a
port for IP traffic." to "...the well-known
port, i.e., port x'0000'.".

21. 4.3.4, changed the first sentence from
"...defines the maximum buffer size..." to
"...shall define the buffer size...". Changed
the 2nd sentence from "...smaller of these
shall be the buffer size..." to "...smaller of
these shall be the maximum Message
size...".

22. 4.3.5, changed the first sentence to note
that the Slots are per port, and calling it a
Schedule Header queue rather than an
Operation queue. Added the sentence
about reserving an extra slot for End.
Changed the names of the operations that
request and supply the state.

23. 4.4.1, added "(T_id's)". Deleted that the
Control Operations use 32-byte Schedule
Headers.

24. 4.4.1, 2nd paragraph, deleted the 32-
bytes + ?? for Schedule Header size.
Added "...e.g., with a Request_To_Send".
Reordered the sentences in the paragraph
for easier comprehension.

25. 4.4.1, 3rd paragraph, deleted the 32-bytes
for the Schedule Header.

26. 4.4.1, 4th paragraph, changed the first
sentence from "Messages" to "STUs";
from "32-byte Schedule Headers followed
by user data" to "40-byte Schedule
Headers followed by data payload". The
second and third sentences of the original
paragraph were removed. In the last
sentence, changed "...if an
acknowledgment should be sent" to "...if
state information should be sent.".

27. 4.4.1, 5th paragraph, changed
acknowledging to acquiring state.
Changed the name of the operations from

DATA_ACK to State_Response, and from
Request_ACK to State_Request.

28. In 4.4.4, changed "Message" to "STU"
throughout. Changed the last sentence
from "...shall extend past a..." to "...shall
extend past a Final Destination's...".

29. In 6, added the 8 bytes of mandatory
payload at the end of figure 5. Added the
text at the end of this section.

30. In 6.2, reordered the flag bits so that they
were in more logical groupings, i.e., like
bits together. Added the Interrupt bit.
Changed the Notify bit from "...notify..." to
"...deliver this STU's Schedule Header
to...".

31. In 6.2, and throughout the document,
changed the "DATA_ACK_Requested"
flag to the "State_Requested" flag. Added
the sentence "For State_Requested to be
valid, either the Interrupt or Notify flag must
also =1.".

32. In 7, 4th paragraph, changed the don't
care value from x'0000' to x'FFFFFFFF'.
Added that one extra Slot should be
reserved for an End operation.

33. In 7.1, 4th paragraph, changed the A-limit
text to match what is now in clause 7.

34. In 7.1, 5th paragraph, added text about
the well-known port, and decoding on
EtherType when using it.

35. In 7.2, 4th paragraph, changed the B-limit
text to match what is now in clause 7, and
7.1.

36. In 7.3, 7.4, and 7.5, this text is still under
discussion and further changes may be
made. The expected changes involve text
or figures describing the 3-way
handshake.

37. In 8.5, in the next to last sentence, added
"e.g., through a previous RTS Operation".

38. In 8.6, the flags parameter was expanded
to include the Interrupt flag, and the text
was reordered to match the order of flags
in the flag field. The last sentence was
removed from the Sync parameter giving
an algorithm for the Sync value.

39. In 8.7 and 8.8, the "DATA_ACK_Request"
operation was renamed
"State_Response", and the
"Request_ACK" operation was renamed
"State_Request". The order of the
operations were reversed in the text, and
the op codes were also swapped, i.e.,

working draft - HIPPI-ST Rev 0.1, 11/15/96

iv

Request comes before Response. The all
ones value for D_id and S_id was added.
Added the B_seq parameter in 8.8.

40. Tables 1 and 2 were updated to match the
changes to the rest of the text.

41. No changes were made to Annex C other
than the global name changes.

working draft - HIPPI-ST Rev 0.1, 11/15/96

v

Contents
Page

Foreword..vii

Introduction...viii

1 Scope...1

2 Normative references..1

3 Definitions and conventions..2
3.1 Definitions...2
3.2 Editorial conventions..2
3.3 Acronyms and other abbreviations...3

4 System overview...3
4.1 Control Channels and Data Channels...3
4.2 System model...4
4.3 Virtual Connections...6
4.4 Data movement..7

5 Service interface..9
5.1 Service primitives..9
5.2 Sequences of primitives..9

6 Schedule Header...10
6.1 Schedule Header parameters...10
6.2 Scheduled Transfer flags..10

7 Virtual Connection Operations...11
7.1 Request_Port (RQP)...12
7.2 RQP_Response..12
7.3 Port_Teardown...13
7.4 Port_Teardown_ACK..13
7.5 Port_Teardown_Complete..14

8 Scheduled Transfer data Operations...14
8.1 Request_To_Send (RTS)..14
8.2 RTS_Response...15
8.3 Clear_To_Send (CTS)...15
8.4 RTS_Response/CTS...16
8.5 Request_To_Receive (RTR)..16
8.6 DATA..17
8.7 State_Request..18
8.8 State_Response...18
8.9 End...19
8.10 End_ACK..19

9 Sender detected errors..19

10. Receiver detected errors...21
10.1 General errors...21
10.2 Virtual Connection errors...21
10.3 Scheduled Transfer errors...21
10.4 Other errors...22

working draft - HIPPI-ST Rev 0.1, 11/15/96

vi

Tables

Table 1 – Virtual Connection Operations summary......................................20
Table 2 – Data transfer Operations summary...20
Table 3 – Summary of logged errors..22
Table C.1 – Scheduled Transfer example summary.....................................29

Figures

Figure 1 – System overview...3
Figure 2 – Information hierarchy..4
Figure 3 – Scheduled Transfer Final Destination model.................................5
Figure 4 – HIPPI-ST service interface...9
Figure 5 – Schedule Header contents..10
Figure C.1 – Buffer tiling..27
Figure C.2 – Alternate buffer tiling..27

Annexes

A Using HIPPI-6400-PH as the lower layer..23

B Using HIPPI-FP as the lower layer...24

C Scheduled Transfer example...25
C.1 Virtual Connection setup...25
C.2 Scheduled Transfer setup...25
C.4 Block 1 CTS..27
C.5 Block 246 transfer...27
C.6 Ending the Virtual Connection..28

working draft - HIPPI-ST Rev 0.1, 11/15/96

vii

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated
at each end before the data transmission, allowing full-rate, non-congesting
data flow between the end devices. The control and data may use different
physical media, or may share a single physical medium. Procedures are
provided for moving data over HIPPI and other media.

This standard provides an upward growth path for legacy HIPPI-based
systems.

This document includes annexes which are informative and are not
considered part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Information Technology Industry Council, 1250 Eye Street, NW, Suite 200,
Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of the standard does not necessarily imply that all
committee members voted for approval. At the time it approved this
standard, the X3 Committee had the following members:

(List of X3 Committee members to be included in the published standard
by the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this
standard, had the following participants:

(List of X3T11 Committee members, and other active participants, at the
time the document is forwarded for public review, will be included by the
Technical Editor.)

working draft - HIPPI-ST Rev 0.1, 11/15/96

viii

Introduction

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated
at each end before the data transmission, allowing full-rate, non-congesting
data flow between the end devices. The control and data may use different
physical media, or may share a single physical medium. Procedures are
provided for moving data over HIPPI and other media.

Characteristics of a HIPPI-ST include:

– A hierarchy of data units (Scheduled Transfer Units (STUs), Blocks, and
Transfers).

– Support for Get and Put Operations.

– Parameters exchanged between end devices for port selection, transfer
identification, and Operation validation.

– Features supporting efficient mapping between the sender's and
receiver's natural buffer sizes.

– Provisions for resending partial Transfers for error recovery.

– Mappings onto HIPPI-6400-PH, HIPPI-FP (for HIPPI-800 traffic), and
Gigabit Ethernet lower-layer protocols.

– Mappings from IP, IPv6, and MPI upper-layer protocols onto Scheduled
Transfer.

working draft proposed American National Standard ANSI X3.xxx-199x

1

High-Performance Parallel Interface –
Scheduled Transfer (HIPPI-ST)

1 Scope

This American National Standard specifies a
data transfer protocol that uses small control
messages to pre-arrange data movement.
Buffers are allocated at each end before the
data transmission, allowing full-rate, non-
congesting data flow between the end devices.
The control and data may use different physical
media, or may share a single physical medium.
Procedures are provided for moving data over
HIPPI and other media.

Specifications are included for:

– Virtual Connection setup and teardown;

– determining the number of Operations the
other end can accept;

– determining the buffer size of the other
end;

– exchanging Key, Port, and transfer
identifiers, and buffer size values, specific to
the end nodes;

– determining a maximum size that will not
overrun receiver buffer boundaries;

– using buffer indices and 64-bit addresses;

– acknowledging partial transfers so that
buffers can be reused;

– providing means for resending partial
Transfers for error recovery; and

– terminating transfers in progress.

2 Normative references

The following American National Standards
contain provisions which, through reference in
this text, constitute provisions of this American
National Standard. At the time of publication,
the editions indicated were valid. All standards
are subject to revision, and parties to
agreements based on this standard are
encouraged to investigate the possibility of
applying the most recent editions of the
standards listed below.

ANSI X3.183-1991, High-Performance Parallel
Interface – Mechanical, Electrical, and
Signalling Protocol Specification (HIPPI-PH)

ANSI X3.210-1992, High-Performance Parallel
Interface – Framing Protocol (HIPPI-FP)

ANSI X3.xxx-199x, High-Performance Parallel
Interface – 6400 Mbit/s Physical Layer (HIPPI-
6400-PH)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks:
Overview and architecture (formerly known as
IEEE Std 802.1A, Project 802: Local and
Metropolitan Area Network Standard —
Overview and Architecture).

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control.

American National Standard
for Information Technology –

working draft - HIPPI-ST Rev 0.1, 11/15/96

2

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 Block: An ordered set of one or more
STUs within a Scheduled Transfer. (See 4.3.3.)

3.1.2 Concatenate: An addressing mode
using 64-bit addresses rather than buffer
indices. (See 6.2.)

3.1.3 Control Channel: The logical channel
that carries the Control Operations.

3.1.4 Data Channel: The logical channel that
carries the data payload.

3.1.5 Final Destination: The end device that
receives, and operates on, the data payload.
This is typically a host computer system, but
may also be a translator, bridge, or router.

3.1.6 HIPPI port: A HIPPI-6400-PH, or HIPPI-
PH, Source or Destination.

3.1.7 Operation: A Scheduled Transfer
function, i.e., a Control Operation or the data
movement specified in an STU.

3.1.8 optional: Characteristics that are not
required by HIPPI-ST. However, if any optional
characteristic is implemented, it shall be
implemented as defined in HIPPI-ST.

3.1.9 Originating Source: The end device
that generates the data payload. This is
typically a host computer system, but may also
be a translator, bridge, or router.

3.1.10 Persistent: A control mode used to
retain buffers for multiple Transfers. (See 6.2.)

3.1.11 Scheduled Transfer: An information
transfer, normally used for bulk data movement
and low processing overhead, where the
Originating Source and Final Destination
prearrange the transfer using the protocol
defined in this standard.

3.1.12 Scheduled Transfer Unit (STU): The
unit consisting of the Schedule Header and
data payload moved from an Originating
Source to a Final Destination. STUs are the
basic components of Blocks.

3.1.13 Slot: A space reserved for a Control

Operation, or the Schedule Header portion of
an STU, in the end device.

Open Issue – Do STUs without Notify or Interrupt = 1
need a Slot?

3.1.14 Transfer: An ordered set of one or
more Blocks within a Scheduled Transfer. (See
4.4.)

3.1.15 Virtual Connection: A bi-directional
logical connection used for Scheduled
Transfers between an Originating Source and a
Final Destination. A Virtual Connection
contains a logical Control Channel and a logical
Data Channel in each direction.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with
other uses of the same words (e.g., DATA).
Any lowercase uses of these words have the
normal technical English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and
the rest lowercase (e.g., Block, Transfer). Any
lowercase uses of these words have the normal
technical English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement. The word should when used in
this standard, states a recommendation.

3.2.1 Binary notation

Binary notation is used to represent relatively
short fields. For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent
some fields. For example a two-byte field
containing a binary value of b'11000100
00000011' is shown in hexadecimal format as
x'C403'.

working draft - HIPPI-ST Rev 0.1, 11/15/96

3

3.3 Acronyms and other abbreviations

ACK acknowledge indication
CTS Clear_To_Send
HIPPI High-Performance Parallel Interface
lsb least significant bit
MAC Media Access Control
MPI Message Passing Interface
msb most significant bit
RQP Request_Port
RTR Request_To_Receive
RTS Request_To_Send
STU Scheduled Transfer Unit
ULP upper-layer protocol

4 System overview

This clause provides an overview of the
structure, concepts, and mechanisms used in
Scheduled Transfers. Figure 1 gives an
example of Scheduled Transfers being used to
communicate between device A and device B
over some physical media. Annex C describes
the steps in a typical Scheduled Transfer.

4.1 Control Channels and Data Channels

Each Scheduled Transfer instance has an
Originating Source and Final Destination. Each
Originating Source and Final Destination shall
have a Control Channel, and one or more Data
Channels.

Control Operations shall be exchanged over the
Control Channel, Scheduled Transfer Units
(STUs), i.e., data, shall be exchanged over the
Data Channel(s). Control Operations shall
consist of Schedule Headers. STUs shall
consist of a Schedule Header and up to 4
gigabytes of data payload. The information
volume on the Data Channel(s) will probably be
may times the volume on the Control Channel,
hence the available bandwidths should be
balanced accordingly. For best performance,
the Control Channel should have low latency,
and should be separate from the Data
Channel(s).

HIPPI-ST

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

HIPPI-ST

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

Lower
Layer(s)

Lower
Layer(s)

Interconnect
Network(s)

Device BDevice A

Figure 1 – System overview

working draft - HIPPI-ST Rev 0.1, 11/15/96

4

4.2 System model

Multiple write (Put) or read (Get) functions may
be executed to move data units, called
Transfers, over a Virtual Connection. As shown
in figure 2, a Transfer is composed of one or
more Blocks, and Blocks are composed of one
or more STUs. This Scheduled Transfer
protocol shall package the Transfer in Blocks
and STUs for delivery using lower layer
protocol(s) and media. The STUs shall consist
of a 40-byte Schedule Header followed by data
payload. Control Operations shall consist of a
40-byte Schedule Header, and may contain up
to 32 bytes of optional payload.

STUs

Blocks

Transfer

........

........

........

........

Schedule
Header

optional
payload

40 bytes 32-bytes

Control Operation

Scheduled Transfer Unit (STU)

Schedule
Header

40 bytes 0 – 4 Gbytes

data payload

Figure 2 – Information hierarchy

Figure 3 shows the model used on a Final
Destination for the Scheduled Transfers. The
model on the Originating would probably be
similar.

As Control Operations and STUs containing
data payload are received, the Schedule
Header of each is placed in the Schedule
Header queue for execution. State information
about the number of empty Slots in the queue
is available to the other end so that it can avoid
overrunning the queue.

The Virtual Connection Descriptor contains:

– static parameters defining the Virtual
Connection from the view of both the remote
end and local end (the top portion of the
Virtual Connection Descriptor box in figure 3),

– current state information about the number
of empty "Slots" for Schedule Headers, and

– identifiers for each of the Virtual
Connection's Transfers.

A Transfer Descriptor, for each Transfer,
contains the data size, in bytes, and includes
pointers to Block Descriptors. The Block
Descriptors (one for each Block of a Transfer)
contain pointers to the Bufx and Offset tables
for each STU of a Block. And finally, the STU
Buffer Pointers are tables pointing to the buffer
locations in the Final Destination's memory.

In an effort to achieve maximum transfer rates
and efficiency, the receiver's job is made as
easy as possible, even at the expense of the
transmit side. It is expected that after validating
an Operation in the Final Destination, only a
single lookup will be needed to derive the
absolute memory address and correctly place
the data.

working draft - HIPPI-ST Rev 0.1, 11/15/96

5

His Port
My Port
My Key

Remote end Local end

Port

Key

Bufsize

Limit

Concatenate

Persistent

Port

Key

Bufsize

Limit

Concatenate

Persistent

Sync #

Current limit

Sync #

Current limit

T_id1

T_id2

T_idn

T_id1

T_id2

T_idn

Virtual Connection
Descriptor

Blocksize

B_num0

B_num1

B_numn

Transfer
Descriptor

Schedule Header
Queue

Li
m

it

S_count = N

S_count = N-1

S_count = 0

Bufx, Offset

Bufx, Offset

Bufx, Offset

Payload
Buffers

STU
Buffer Pointers

Block
Descriptor

To other
Transfer
Descriptors To other

Block
Descriptors

To other
STU
Buffer
Pointers

Figure 3 – Scheduled Transfer Final Destination model

working draft - HIPPI-ST Rev 0.1, 11/15/96

6

4.3 Virtual Connections

Scheduled Transfers between an Originating
Source and Final Destination are pre-arranged
so that the transfer can occur at full rate. Pre-
arrangement means that buffers are allocated
at each end device. The bi-directional path
between the end devices is called a Virtual
Connection. A Virtual Connection shall consist
of an Originating Source and Final Destination
in each end device.

Once the Final Destination has indicated its
ability to accept the STUs, the Virtual
Connection should not become congested. In
essence, the Final Destination smoothly
controls the flow. For comparison, without pre-
arranging the buffers the Originating Source
blindly sends STUs into the interconnection
network where they may have to wait for buffers
to be assigned in the Final Destination. On the
down-side, Scheduled Transfers require
additional Control Operations, and round-trip
latency. Once established, a Virtual
Connection may be used to carry multiple
Transfers. This Scheduled Transfer protocol
does not handle network resource reservations.

4.3.1 Sequences and Operations

During Virtual Connection setup, the end
devices shall exchange parameters specific to
each device. These parameters, shown in the
upper portion of the Virtual Connection
descriptor box in figure 3 and detailed below,
include values for:

– keys (used for authenticating Operations);

– Port numbers (e.g., a port for IP traffic);

– native buffer sizes (for determining STU
sizes);

– maximum number of outstanding
Operations (to keep from overflowing the
command queues); and

– whether or not they support Concatenate
and Persistent modes.

The parameters assigned during setup shall
apply for the life of the Virtual Connection.
Once established, the Virtual Connection is
accessed as shown in figure 3 by the tupple
"his Port", "my Port", and "my Key". The

Control Operations defined for Virtual
Connection setup are:

– Request_Port (RQP) (See 7.1.)

– RQP_Response (See 7.2.)

The Control Operations defined for Virtual
Connection teardown are:

– Port_Teardown (See 7.3.)

– Port_Teardown_ACK (See 7.4.)

– Port_Teardown_Complete (See 7.5.)

4.3.2 Keys

Each end device shall select its own 32-bit key
value for use on the Virtual Connection. For
example, when device A requests a Virtual
Connection to device B, device A shall select
the value for A-Key, and shall send it to device
B in the Request_Port Operation. Device B
shall store the A-Key value, and shall return it to
device A in every Operation over this Virtual
Connection. The A-Key value has no meaning
in device B, it is only significant in device A
where it shall be used to validate that the
Operation presented is really associated with
this Virtual Connection. Likewise, device B shall
select the value for B-Key. Keys are similar in
nature to passwords; if the key doesn't match,
then the Operation shall not be executed.

4.3.3 Ports

Ports identify higher-layer logical connections
within a device. Like the keys, the port values
shall be assigned by the local device, and have
no meaning on the other end. An exception is
the "well-known port", i.e., port x'0000'. In this
case, a request sent to the "well-known port"
shall result in the receiving device assigning a
specific local port value now that it knows the
traffic to expect.

4.3.4 Buffer sizes

Each end shall define the buffer size, in bytes,
that it wants to use. The smaller of these shall
be the maximum Message size used on this
Virtual Connection. Buffer sizes may be the
same as host page sizes. It is most efficient
when the buffer sizes are the same on both
ends, but differing buffer sizes are supported

working draft - HIPPI-ST Rev 0.1, 11/15/96

7

(see annex C). The buffer sizes shall be ≥ 32
bytes and shall be an integral power of two.
The buffer index (Bufx) parameter can be used
as an index into tables pointing to the buffers.

4.3.5 Operation limits

The current limit parameter defines the
maximum number of Schedule Headers that a
port is able to accept (one per Slot) without
overflowing its Schedule Header queue. The
number of Slots available is passed to the other
end, where it is used to control the issuance of
Control Operations and STUs, i.e., don't
overrun or excess entities may be discarded.
The device shall advertise at least one less
than the actual number of Slots so that a Slot
for an End is always available. A snapshot of
the available Slots shall be returned with
State_Response Control Operations (see 8.8),
and can be requested with State_Request
Control Operations (see 8.7).

Open Issue – The text beyond this point has not been
reviewed in detail.

4.3.6 Concatenate and Persistent

Concatenate is a mode where the addressing
method is changed (see 6.2). Persistent is a
request to retain the buffers for multiple
transfers rather than releasing them at the end
of the transfer (see 6.2). Both Concatenate
and Persistent are only usable between hosts
that mutually agree. Agreement is reached by
passing the associated flag bits during the
Virtual Connection setup.

4.4 Data movement

4.4.1 Sequences and Operations

A write data sequence (which may be initiated
by either end of the Virtual Connection) shall be
set up by the end devices exchanging transfer
identifiers (T_id's) specific to each device.
Other parameters exchanged shall be the
number of bytes in the Transfer, and the
number of Blocks in the Transfer. The Control
Operations setting up a write data sequence
are:

– Request_To_Send (RTS) (See 8.1.)

– RTS_Response (See 8.2.)

A read data sequence, which moves the
Transfer as a single Block, requires that both
ends had previously allocated resources for the
entire read sequence, e.g., with a
Request_To_Send. The Control Operation
setting up a read data sequence is:

– Request_To_Receive (RTR) (See 8.5)

The Final Destination controls the data flow with
Control Operations. These Control Operations
shall contain parameters specifying the Block
number to send (B_num), and the buffer index
(Bufx) and Offset parameters specifying where
the data will be placed in the Final Destination.
An RTS_Response/CTS Operation combines
the RTS_Response and CTS Operations into
one Operation.

– Clear_To_Send (CTS) (See 8.3.)

– RTS_Response/CTS (See 8.4.)

The STUs carrying the data payload shall
consist of 40-byte Schedule Headers followed
by data payload. Flags shall indicate if this is
the first STU of a Block, if Concatenation is to
be used, if the ULP should be notified, and if
state information should be sent.

– DATA (See 8.6.)

Control Operations are used to acquire state
information. The state information includes
whether the specified Block was received
correctly, the highest numbered Block of this
Transfer that has been received correctly, and
the number of available Slots in the Final
Destination's Schedule Header queue. State
information can be requested in a DATA
Operation, or with a State_Request Control
Operation.

– State_Request (See 8.7.)

– State_Response (See 8.8.)

The Control Operations below are used to abort
a Transfer. Unlimited size Transfers shall use
this method to signal the end of the Transfer.

– End (See 8.9.)

– End_ACK (See 8.10.)

working draft - HIPPI-ST Rev 0.1, 11/15/96

8

4.4.2 Transfers

Transfers shall be assigned transfer identifiers
(i.e., S_id and D_id) unique to each end device.
For the source of an Operation, the transfer
identifier (S_id) is its own local transfer identifier,
and the D_id is the other end's local transfer
identifier.

4.4.3 Blocks

Scheduled Transfer flow control, striping,
acknowledgments, and resource allocation are
all done on a Block basis. All Blocks of a
Scheduled Transfer shall be the same size,
except for the first and/or last Block of the
Transfer, which may be smaller. Block numbers
(B_num) shall be numbered starting at zero,
and incrementing by one for each following
Block.

Blocks which have been enabled for transfer
may be delivered in any order. Receivers shall
request that the Block be transmitted in
sequential order, (i.e., using CTS Operations),
unless pre-arrangements have been made to
assure that the senders are capable of out-of-
order transmission (these pre-arrangements are
beyond the scope of this standard).

4.4.4 STUs

The STUs of a Block shall be transmitted in
order. STU numbers (S_count) shall start with
(number of STUs in this Block – 1) and
decrement by one for each following STU. The
last STU of a Block shall have S_count = 0. No
STU shall extend past a Final Destination's
buffer region boundary, Block size boundary, or
Transfer boundary.

4.4.5 Bufx and Offset

When Concatenate = 0, Bufx specifies a buffer
index for placing the data in the Final
Destination. If more than one Bufx is required
for a Block, i.e., Block size > buffer size, then
the Bufx parameter in the CTS Operation shall
specify the initial Bufx and any additional Bufx
values shall be contiguous. Offsets may be
used to start at other than the first byte of a
buffer.

When Concatenate = 1, the Bufx and Offset
fields shall be concatenated into a single 64-bit
address (see 6.2).

Open Issue – This text needs to be expanded to
include Source_Concatenate if that bit is kept.

working draft - HIPPI-ST Rev 0.1, 11/15/96

9

5 Service interface

This clause specifies the services provided by
HIPPI-ST. The intent is to allow ULPs to
operate correctly with this HIPPI-ST. How many
of the services described herein are chosen for
a given implementation is up to that
implementor; however, a set of HIPPI-ST
services must be supplied sufficient to satisfy
the ULP(s) being used. The services as
defined herein do not imply any particular
implementation, or any interface.

Figure 4 shows the relationship of the HIPPI-ST
interfaces.

HIPPI-6400

Upper-layer
protocols

Data transfer
service interface

(64_...)

Station
management

(SMT)
Management

service interface
(64SM_...)

Figure 4 – HIPPI-ST service interface

5.1 Service primitives

The primitives, in the context of the state tran-
sitions in clause 5, are declared required or
optional. Additionally, parameters are either
required, conditional, or optional. All of the
primitives and parameters are considered as
required except where explicitly stated other-
wise.

HIPPI-ST service primitives are of four types.

– Request primitives are issued by a service
user to initiate a service provided by the
HIPPI-ST. In this standard, a second
Request primitive of the same name shall not
be issued until the Confirm for the first
request is received.

–Confirm primitives are issued by the HIPPI-
ST to acknowledge a Request.

– Indicate primitives are issued by the HIPPI-
ST to notify the service user of a local event.
This primitive is similar in nature to an unso-
licited interrupt. Note that the local event may
have been caused by a service Request. In
this standard, a second Indicate primitive of
the same name shall not be issued until the
Response for the first Indicate is received.

– Response primitives are issued by a service
user to acknowledge an Indicate.

5.2 Sequences of primitives

The order of execution of service primitives is
not arbitrary. Logical and time sequence
relationships exist for all described service primi-
tives. Time sequence diagrams are used to
illustrate a valid sequence. Other valid
sequences may exist. The sequence of events
between peer users across the user/provider
interface is illustrated. In the time sequence
diagrams the HIPPI-ST users are depicted on
either side of the vertical bars while the HIPPI-
ST acts as the service provider.

NOTE - The intent is to flesh out the service primitives
similar to what is in HIPPI-PH today.

working draft - HIPPI-ST Rev 0.1, 11/15/96

10

6 Schedule Header

The Schedule Header shall be as shown in
figure 5 as a group of 32-bit words. The
Schedule Header shall be used with all
Scheduled Transfers. The primary usage for
each parameter is listed below, other uses are
summarized in tables 1 and 2.

 Bytes

Op Flags S_count 00-03

D_Port S_Port 04-07

Key 08-11

D_id S_id 12-15

Bufx 16-19

Offset 20-23

T_len 24-27

B_num 28-31

8 bytes of mandatory payload 32-39

Figure 5 – Schedule Header contents

6.1 Schedule Header parameters

The Schedule Header parameters shall be as
follows. If an Operation does not use a
particular Schedule Header parameter, then
that parameter shall be transmitted as zeros.

Op (5 bits, high-order 5 bits of byte 00) – The
Scheduled Transfer Operation. See tables 1
and 2 for a summary of Op values.
Unspecified values of Op are reserved.

Flags (11 bits, low-order 3 bits of byte 00, and
all of byte 01) = Control flags (see 7.5).

S_count (16 bits, bytes 02-03) – The number
of maximum-size STUs in a Block, or used as
an STU counter (counting down to zero) in
DATA Operations.

D_Port (16 bits, bytes 04-05) – The Final
Destination's logical port for this Operation.

S_Port (16 bits, bytes 06-07) – The Original
Source's logical port for this Operation.

Key (32 bits, bytes 08-11) – Virtual
Connection identifier. Generated
independently by each end during the Virtual

Connection setup. (See 8.2.)

D_id (16 bits, bytes 12-13) – The Final
Destination's identifier for this Transfer. (See
8.1.)

S_id (16 bits, bytes 14-15) – The Originating
Source's identifier for this Transfer. (See 8.1.)

Bufx (32 bits, bytes 16-19) – The buffer index
at the Final Destination. Bufx is used at the
Final Destination to select a memory location,
e.g., from a table of buffer addresses, or as
the high-order portion of a 64-bit
concatenated address. (See annex C.)

Offset (32 bits, bytes 20-23) – The Final
Destination's Offset within a Bufx, or the low-
order portion of a 64-bit concatenated
address. (See annex C.)

T_len (32 bits, bytes 24-27) – The length, in
bytes, of the Transfer data. T_len =
x'00000000' has special meaning, see 8.1.

B_num (32 bits, bytes 28-31) – Labels the
Block being requested or acknowledged.
B_num starts at zero. Note that Blocks may
be transferred in any order (see annex C).

The eight bytes of mandatory payload (64
bits, bytes 32-39) are available for use by
upper-layer protocols; their meaning is
outside the scope of this standard.

6.2 Scheduled Transfer flags

Unspecified flag values are reserved. The flags
shall be:

Open Issue – The flag bits were reordered in what
seemed to be a more logical order, grouping related
bits.

Interrupt (b'x1xxxxxxxxx') = Requests that the
Final Destination immediately deliver this
STU's Schedule Header to the appropriate
upper-layer protocol upon successful receipt
of this STU.

Notify (b'xx1xxxxxxxx') = Requests that the
Final Destination deliver this STU's Schedule
Header to the appropriate upper-layer
protocol upon successful receipt of this STU.

State_Requested (b'xxx1xxxxxxx') = Requests
that the Final Destination respond with a

working draft - HIPPI-ST Rev 0.1, 11/15/96

11

State_Response upon successful receipt of
this STU by the higher-layer protocol. For
State_Requested to be valid, either the
Interrupt or Notify flag must also = 1.

Source_Concatenate (b'xxxx1xxxxxx') = The
S_count, D_id, and B_num fields shall be
concatenated into a single 64-bit Originating
Source address. S_count shall contain the
most-significant bytes of the address, and
B_num the least-significant bytes. Support
for its use is optional, and is indicated during
Virtual Connection setup.
Source_Concatenate is only used with RTR,
(see 8.5).

Open Issue – Greg Chesson has an action item to
determine if we need the Source_Concatenate bit or
not, and if so the text to go with it.

Concatenate (b'xxxxx1xxxxx') = The Bufx and
Offset fields shall be concatenated into a
single 64-bit Final Destination address. Bufx
shall contain the most-significant bytes of the
address. The value of the Concatenate flag
shall be consistent for an entire Transfer, i.e.,
you cannot switch back and forth between
64-bit addresses and buffer indexes within a
Transfer. Support for its use is optional, and
is indicated during Virtual Connection setup.

Persistent (b'xxxxxx1xxxx'). When Persistent
= 1, the memory in the Final Destination
allocated for this Scheduled Transfer shall be
retained for multiple transfers, and not
released until Port_Teardown occurs. When
Persistent = 0, the memory may be allocated
for other uses after the Scheduled Transfer is
complete. Support for its use is optional, and
is indicated during Virtual Connection setup.

First (b'xxxxxxx1xxx') = First STU of a Block

Reject (b'xxxxxxxx1xx') = The request (e.g.,
RQP, RTS, or RTR) has been rejected.

Data channel assignment: (RTS only, see
8.1.)

b'xxxxxxxxx00' = Receive the data on Data
Channel 0.
b'xxxxxxxxx01' = Receive the data on Data
Channel 1.
b'xxxxxxxxx10' = Receive the data on Data
Channel 2.
b'xxxxxxxxx11' = Receive the data on Data
Channel 3.

7 Virtual Connection Operations

Ports are logical entities in the end devices.
Virtual Connections are set up between two
ports, called the A-Port and B-Port. The device
that initiates the Virtual Connection is called
device A, and the device at the other end is
called device B. The Virtual Connection is full-
duplex and symmetrical.

In addition to the port names, each port shall
associate a Key value (A-Key and B-Key) with
the Virtual Connection. Device A shall select the
value of A-Key, and device B shall select the
value of B-Key. Device B shall include the A-
Key in all Operations. Device A shall use A-Key
to validate the Operations.

Buffer sizes (A-Bufsize and B-Bufsize) shall be
exchanged while setting up the Virtual
Connection. The Bufsize parameter tells the
other end the size, in bytes, of the device's
buffers. If the sizes are not the same, then the
data transfer shall use the smaller of the values
as the maximum STU size on this Virtual
Connection.

The maximum number (A-limit and B-limit) of
unacknowledged Operations, (i.e., Schedule
Headers) on this Virtual Connection that each
device can support shall also be exchanged
while setting up the Virtual Connection. The
value specified shall be one less than the
actual number of Slots so that a Slot for an End
is always available. A-limit = x'FFFFFFFF'
means don't care, or that device A can support
an unlimited number of Operations.

The Operations used to set up and tear down
Virtual Connections are detailed below, and
summarized in table 1. Only the fields used in
each Operation are listed, all of the other
Schedule Header fields shall be transmitted as
zeros. While a particular field usually carries the
parameter of the same name, fields sometimes
carry other parameter values. In the
Operations below, the specific parameter used
in the Operation is listed first, and if is not
carried in the field of the same name then the
field name is included in square brackets.

working draft - HIPPI-ST Rev 0.1, 11/15/96

12

7.1 Request_Port (RQP)

Request_Port shall be used to setup a Virtual
Connection from this end device (called the A-
Port) to another end device (called the B-Port).
Device A shall also use the RQP Operation to
inform device B about device A's buffer size,
and assigns A-Key, A-Port, and A-limit values,
and indicates support or not for
Source_Concatenate, Concatenate, and
Persistent.

Semantics – RQP (
Op,
Flags,
A-limit [S_count],
B-Port [D_Port],
A-Port [S_Port],
A-Bufsize [Bufx],
A-Key [Offset],
EtherType [B_num])

Op = x'01'

Flags shall specify the Source_Concatenate,
Concatenate, and Persistent flags. A value
of 1 shall indicate that device A supports that
feature.

A-limit, carried in the S_count field, shall
specify the maximum number of
unacknowledged Operations, (i.e., Schedule
Headers) that device A can support on this
Virtual Connection. Operations received in
excess of this number may be discarded.
The value specified shall be one less than the
actual number of Slots so that a Slot for an
End is always available. A-limit = x'FFFFFFFF'
means don't care, or that device A can
support an unlimited number of Operations.

B-Port, carried in the D_Port field, shall
specify the logical port value for device B for
this Virtual Connection. B-Port may be either
a well-known port that is providing this service,
or a peer port that provides this service. The
default well-known port, when device B is
expected to assign a port value, shall be
D_Port = x'0000'. Device B shall decode the
EtherType field to determine the Virtual
Connection's data type.

A-Port, carried in the S_Port field, shall
specify the logical port value for device A for
this Virtual Connection. Device B shall use
this A-Port value when replying to device A

concerning this Virtual Connection.

A-Bufsize, carried in the Bufx field, shall
specify device A's buffer size.

A-Key, carried in the Offset field, shall be the
Key value assigned by device A for this
Virtual Connection. Device B shall include the
A-Key in all Operations. Device A shall use A-
Key to validate the Operations.

EtherType (see 7.2), carried in the B_num
field, shall be a value that characterizes the
data payloads that will be exchanged on this
Virtual Connection.

Issued – By device A.

Effect – If it accepts the request, then device B
shall establish a Virtual Connection and shall
reply with an RQP_Response. Note that the
Virtual Connection is full-duplex in that either
device A or device B device may initiate a
Scheduled Transfer. Multiple Scheduled
Transfers may occur over a single Virtual
Connection, and the Scheduled Transfers can
be either writes or reads.

7.2 RQP_Response

RQP_Response shall inform device A whether
the Virtual Connection was accepted or not. If
accepted, device B shall use the
RQP_Response Operation to inform device A
about device B's buffer size, to assign B-Key,
B-Port, and B-limit values, and to indicate
support or not for Source_Concatenate,
Concatenate, and Persistent.

Semantics – RQP_Response (
Op,
Flags,
B-limit [S_count],
A-Port [D_Port],
B-Port [S_Port],
A-Key [Key],
B-Bufsize [Bufx],
B-Key [Offset])

Op = x'02'

Flags shall specify the Source_Concatenate,
Concatenate, Persistent, and Reject flags.
Source_Concatenate, Concatenate, or
Persistent =1 shall indicate that device B

working draft - HIPPI-ST Rev 0.1, 11/15/96

13

supports that feature. If Reject = 1, then the
Operation is refused. The actions taken when
an RQP is refused are beyond the scope of
this standard.

B-limit, carried in the S_count field, shall
specify the maximum number of
unacknowledged Operations, (i.e., Schedule
Headers) that device B can support on this
Virtual Connection. Operations received in
excess of this number may be discarded.
The value specified shall be one less than the
actual number of Slots so that a Slot for an
End is always available. B-limit = x'FFFFFFFF'
means don't care, or that device B can
support an unlimited number of Operations.

A-Port, carried in the D_Port field, shall be the
same as the A-Port value in the RQP
Operation.

B-Port, carried in the S_Port field, shall
contain the B-Port value assigned by device
B for this Virtual Connection.

A-Key, carried in the Key field, shall be the
validation key previously assigned by device
A in the RQP Operation.

B-Bufsize, carried in the Bufx field, shall
specify device B's buffer size. The smaller of
A-Bufsize and B-Bufsize shall be used as the
maximum STU size for this Virtual
Connection.

B-Key, carried in the Offset field, shall be the
Key value assigned by device B for this
Virtual Connection. Device A includes the B-
Key in all Operations. Device B uses B-Key
to validate the Operations.

Issued – By device B in response to an RQP.

Effect – Unless disallowed by Reject = 1, device
A has been assigned a logical port on device B.
If accepted, the keys, buffer sizes, and
maximum number of outstanding Control
Operations have been exchanged, and a
Virtual Connection has been established.

7.3 Port_Teardown

Port_Teardown shall terminate the Virtual
Connection, and may be issued by either
device A or device B. The Port_Teardown
sequence uses a three-way handshake.

Open Issue – A more complete description of the 3-way
handshake needs to be provided.

Semantics – Port_Teardown (
Op,
D_Port,
S_Port,
Key)

Op = x'03'

D_Port shall contain the value associated with
the recipient of the Operation, e.g., D_Port =
B-Port when the Port_Teardown is issued by
device A.

S_Port shall contain the value associated with
the initiator of the Operation, e.g., S_Port =
A-Port when the Port_Teardown is issued by
device A.

Key shall contain the Key value associated
with the recipient of the Operation, e.g., Key
= B-Key when the Port_Teardown is issued
by device A.

Issued – By either side, i.e., device A or device
B, of the Virtual Connection. The sender
should not issue a Port_Teardown when there
is unacknowledged data on the Virtual
Connection.

Effect – The sender should release any buffers
associated with this Virtual Connection, but
shall retain the Port and Key values for use in
further Port_Teardown Operations.

7.4 Port_Teardown_ACK

Port_Teardown_ACK shall be used to
acknowledge receipt of a Port_Teardown.

Semantics – Port_Teardown_ACK (
Op,
D_Port,
S_Port,
Key)

Op = x'04'

D_Port shall contain the value associated with
the recipient of the Operation, e.g., D_Port =
B-Port when the Port_Teardown_ACK is
issued by device A.

working draft - HIPPI-ST Rev 0.1, 11/15/96

14

S_Port shall contain the value associated with
the initiator of the Operation, e.g., S_Port =
A-Port when the Port_Teardown_ACK is
issued by device A.

Key shall contain the Key value associated
with the recipient of the Operation, e.g., Key
= B-Key when the Port_Teardown_ACK is
issued by device A.

Issued – By the recipient of a Port_Teardown
Operation after releasing this Virtual
Connection's buffers.

Effect – TBD

7.5 Port_Teardown_Complete

Port_Teardown_Complete shall be used to
provide a three-way handshake, acknowledging
that the actions associated with a
Port_Teardown have been completed.

Semantics – Port_Teardown_Complete (
Op,
D_Port,
S_Port,
Key)

Op = x'05'

D_Port shall contain the value associated with
the recipient of the Operation, e.g., D_Port =
B-Port when the Port_Teardown_Complete is
issued by device A.

S_Port shall contain the value associated with
the initiator of the Operation, e.g., S_Port =
A-Port when the Port_Teardown_Complete is
issued by device A.

Key shall contain the Key value associated
with the recipient of the Operation, e.g., Key
= B-Key when the Port_Teardown_Complete
is issued by device A.

Issued – By the recipient of a
Port_Teardown_ACK Operation.

Effect – After the Op-retry expires, the sender
shall release this Virtual Connection's Port and
Key values. The recipient of the
Port_Teardown_Complete shall release this
Virtual Connection's Port and Key values.

8 Scheduled Transfer data Operations

The Operations used for Scheduled Transfers
are detailed below, and summarized in table 2.
All of the Scheduled Transfer data transfer
Operations use the D_Port, S_Port, A-Key, and
B-Key values that were assigned during the
Virtual Connection setup (see 8.2). When
device A issues the Operation then S_Port = A-
port, D_Port = B-port, and Key = B-Key.
Likewise, when device B issues the Operation
then S_Port = B-port, D_Port = A-port, and Key
= A-Key. For clarity and brevity, these values
are not listed in the individual Operations. All
other Schedule Header parameters that are not
listed in a specific Operation shall be
transmitted as zeros.

8.1 Request_To_Send (RTS)

Request_To_Send is issued by the Originating
Source to specify the number of data bytes
(T_len) to be sent from the Originating Source
(S_Port) to the Final Destination (D_Port), and
the Source's Transfer identifier (T-id). In
addition, the Originating Source shall specify
whether 64-bit address or buffer indexes are
used, whether the Final Destination's buffer
should be maintained or discarded after the
transfer, and the Data Channel assignment for
the data transfer. Note that the device on
either end of the Virtual Connection may issue
a Request_To_Send.

Semantics – RTS (
Op,
Flags,
S_id,
T_len)

Op = x'06'

Flags shall specify the Concatenate,
Persistent, and Data Channel assignment
flags (see 7.5). Concatenate or Persistent
shall only = 1 if the corresponding flag was
set = 1 by the other end during the Virtual
Connection setup (see 7.1 and 7.2).

S_id shall be the Transfer identifier used by
this end (i.e., the Originating Source) to
identify this Transfer. The Final Destination

working draft - HIPPI-ST Rev 0.1, 11/15/96

15

shall use this value as the D_id parameter
when replying to the Originating Source
concerning this Transfer.

T_len shall specify the total number of data
payload bytes in the Transfer. T_len does
not include the Schedule Header, or any
lower-layer headers. T_len = x'00000000'
shall mean an unlimited size Transfer. An
unlimited size Transfer is terminated by an
End Operation (see 8.7).

Issued – By the Originating Source after a
Virtual Connection has been established.

Effect – The Final Destination shall setup for
the data transfer, and then reply back to the
Originating Source with the associated
parameters.

8.2 RTS_Response

RTS_Response shall be used to tell the
Originating Source if the transfer is allowed or
not. If allowed, the RTS_Response specifies
the Transfer identifier assigned by this end (i.e.,
the Final Destination) for this Transfer, and the
number of STUs per Block. An
RTS_Response does not give the Originating
Source permission to start transmission; that
comes from a CTS.

Semantics – RTS_Response (
Op,
Flags,
Blocksize [S_count],
D_id,
S_id,
T_len)

Op = x'07'

Flags shall specify the Reject and
Concatenate flags. If Reject = 1, then the
Operation is refused. The actions taken
when an RTS is refused are beyond the
scope of this standard. Concatenate shall be
the same value as in the RTS.

Blocksize, carried in the S_count field, shall
specify the number of maximum size STUs
that may be transmitted in each Block.

D_id shall be the Transfer identifier assigned
by the Originating Source in the RTS

Operation.

S_id shall be the Transfer identifier used by
the Final Destination to identify this Transfer.
The Originating Source shall use this value as
the D_id parameter when replying to the Final
Destination concerning this Transfer.

T_len shall be the same value as in the RTS
Operation, but it need not be checked by the
Originating Source.

Issued – By the Final Destination.

Effect – The Originating Source shall segment
the Transfer into Blocks and STUs. (See figure
2 and annex C.)

8.3 Clear_To_Send (CTS)

Clear_To_Send shall be used to give the
Originating Source permission to send one
Block. Clear_To_Send may also be used to
request retransmission of a Block from systems
that are capable of retransmissions.

Semantics – CTS (
Op,
Flags,
D_id,
S_id,
Bufx,
Offset,
B_num)

Op = x'08'

Flags shall specify the Concatenate flag.
Concatenate shall be the same value as in
the RTS or RTR that initiated this Transfer.

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection.

Bufx shall specify the initial buffer index in the
Final Destination where the data will be
placed. If multiple Bufx values are required
for a Block, then the Bufx values shall be
contiguous.

Offset is a value that the Final Destination
wants to receive with the first STU so that the
data can be properly placed in the Final
Destination's memory.

working draft - HIPPI-ST Rev 0.1, 11/15/96

16

B_num shall be the Block number being
given permission to be transmitted. Block
numbers shall start at zero and increment by
one for subsequent Blocks.

Issued – By the Final Destination.

Effect – The Originating Source shall transfer
the specified Block.

8.4 RTS_Response/CTS

RTS_Response/CTS is a combined
RTS_Response and a Clear_To_Send, i.e., it
tells the Originating Source how to break up the
Transfer, and also gives permission to send
one Block.

Semantics – RTS_Response/CTS (
Op,
Flags,
Blocksize [S_count],
D_id,
S_id,
Bufx,
Offset,
T_len,
B_num)

Op = x'09'

Flags shall specify the Concatenate flag.
Concatenate shall be the same value as in
the RTS that initiated this Transfer.

Blocksize, carried in the S_count field, shall
specify the number of maximum size STUs
that may be transmitted in each Block.

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection.

Bufx shall specify the initial buffer index in the
Final Destination where the data will be
placed. If multiple Bufx values are required
for a Block, then the Bufx values shall be
contiguous.

Offset is a value that the Final Destination
wants to receive with the first STU so that the
data can be properly placed in the Final
Destination's memory.

T_len shall be the same value as in the RTS

Operation, but it need not be checked by the
receiver.

B_num shall be the Block number being
given permission to be transmitted. Block
numbers start at zero and increment by one
for subsequent Blocks.

Issued – By the Final Destination.

Effect – The Originating Source shall segment
the Transfer into Blocks and STUs, and shall
transfer the specified Block.

8.5 Request_To_Receive (RTR)

Request_To_Receive is issued by the Final
Destination to specify the number of data bytes
(T_len) to be sent from the Originating Source
to the Final Destination, and the Final
Destination's Transfer identifier. In addition, the
Final Destination shall specify whether 64-bit
addresses or buffer indexes are used at the
Originating Source, at the Final Destination, or
at both. An RTR transfers a single Block; there
is no notion of a multi-Block RTR transfer.
When an RTR is issued it is assumed that the
ULPs on both end devices had previously
allocated resources for the entire Transfer, e.g.,
through a previous RTS Operation. Note that
the device at either end of the Virtual
Connection may issue a Request_To_Receive.

Semantics – RTR (
Op,
Flags,
OS-Offset [S_count | D_id],
S_id,
Bufx,
Offset,
T_len,
OS_Bufx [B_num])

Op = x'0A'

Flags shall specify the Concatenate flag (for
controlling addressing on the Final
Destination), and the Source_Concatenate
flag (for controlling the addressing on the
Originating Source). Source_Concatenate
shall only = 1 if Source_Concatenate = 1 was
set by this device during the Virtual
Connection setup (see 7.1 and 7.2).

OS_Offset, carried in the concatenation of

working draft - HIPPI-ST Rev 0.1, 11/15/96

17

the S_count and D_id fields (yes, these are
two disjoint 16-bit fields), shall specify the
Originating Source's offset value. The
S_count field shall contain the most-
significant bytes of OS_Offset.

S_id shall be the Transfer identifier used by
the Final Destination to identify this Transfer.
The Originating Source shall use this value as
the D_id parameter when replying to the Final
Destination concerning this Transfer.

Bufx shall specify the Final Destination's
buffer index.

Offset shall be the Offset where the Final
Destination wants to receive with the first STU
so that the data can be properly placed in the
Final Destination's memory.

T_len shall specify the total number of data
payload bytes in the Transfer. T_len does
not include the Schedule Header, or any
lower-layer headers.

OS_Bufx, carried in the B_num field, shall
specify the Originating Source's buffer index.

Issued – By the Final Destination.

Effect – The Originating Source shall transfer
the specified Transfer.

8.6 DATA

A DATA Operation transfers an STU of a Block
from the Originating Source to the Final
Destination. No STU shall be larger than the
maximum STU size determined during the
Virtual Connection setup (see 7.2), plus 32
bytes of Schedule Header.

Semantics – DATA (
Op,
Flags,
S_count,
D_id,
S_id,
Bufx,
Offset,
Sync [T_len],
B_num)

Op = x'0B'

Flags shall specify the Interrupt, Notify,
State_Requested, Concatenate, and First
flags (see 7.5). Concatenate shall be the
same value as in the RTS or RTR that
initiated this Transfer. State_Requested may
be sent with any STU of a Block. The
State_Response Control Operation
associated with this request shall be issued
after processing this STU.

S_count shall be the STU number. S_count
shall be decremented before each STU is
sent. The first STU shall have S_count =
(number of STUs in the Block) – 1. The last
STU in a Block shall have S_count = x'0000'.

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection. Note
that if this is the first STU associated with an
RTR Operation, then this Transfer identifier is
being assigned by the Originating Source,
and shall be used by the Final Destination as
the D_id parameter when replying to the
Originating Source concerning this Transfer.

Bufx shall be the buffer index at the Final
Destination. The first STU of the Block shall
use the Bufx value received in the CTS,
RTS_Response/CTS, or RTR, Operation.
Subsequent STUs of the Block shall adjust
the Bufx value based on the Final
Destination's buffer size. (See annex C.)

Offset shall be the Final Destination's offset
within a Bufx. Offset is satisfied within the first
STU of a Block, and hence zero for
subsequent STUs of the Block, except when
the Originating Source has a smaller buffer
size than the Final Destination. (See annex
C.)

Sync, carried in the T_len field, shall be a
value assigned by the Originating Source to
synchronize the current view of the number of
Operations that can be accepted by the Final
Destination. The maximum number of
unacknowledged Operations was established
by the A-limit and B-limit exchange during the
Virtual Connection setup (see 7.1 and 7.2).
The current value of empty Slots is returned
to the Originating Source by a
State_Response Control Operation (see 8.8).
The Sync value is only valid when
State_Requested = 1.

working draft - HIPPI-ST Rev 0.1, 11/15/96

18

B_num shall be the number of the Block that
this STU is a part of.

Issued – By the Originating Source.

Effect – The Final Destination shall place the
STU data in the memory area pointed to by
Bufx, and offset by the Offset value. The Final
Destination shall only accept data into pre-
allocated buffer regions. The Final Destination
is responsible for ensuring that all of the Blocks
of a Transfer are received. The actions to be
taken if a Block is missing are beyond the
scope of this standard.

8.7 State_Request

State_Request is used to request that the other
end provide its current number of empty Slots
for Schedule Headers, the Block number
associated with the last set of contiguously
good data received, and whether the named
Block was received correctly.

Semantics – State_Request (
Op,
D_id,
S_id,
Sync [T_len],
B_num)

Op = x'0C'

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.
D_id = x'FFFF' means that the receiver shall
not look for a current Tranfer, and only return
the current number of empty Slots for this
Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection. If D_id
= x'FFFF', then S_id shall also be x'FFFF'.

Sync, carried in the T_len field, shall be the
same as defined in the DATA Operation (see
8.6).

Issued – By an end device that needs state
information from the device on the other end of
the Virtual Connection. The sender may not
have received the State_Responses it
expected, and can use State_Requests to
recover from lost or damaged
State_Responses.

Effect – The receiver shall immediately reply
with a State_Response. Note that the
State_Response associated with the
State_Requested flag bit in an DATA Operation
waits for the STU to finish processing rather
than immediately.

8.8 State_Response

State_Response shall be used to indicate the
number of empty Slots in this Port of the Virtual
Connection. State_Response may also
indicate the highest numbered contiguous
Block received correctly, and whether the
named Block was received correctly.

Semantics – State_Response (
Op,
C-limit [S_count],
D_id,
S_id,
B_seq [Offset],
Sync [T_len],
B_num)

Op = x'0D'

C-limit, carried in the S_count field, shall
indicate the sender's view of the number of
empty Slots it has available for additional
Operations. (See 8.6.)

D_id shall echo the S_id value in the
State_Request or DATA Operation that
triggered this State_Response.

S_id shall echo the D_id value in the
State_Request or DATA Operation that
triggered this State_Response. S_id =
x'FFFF' shall mean that the B_seq and
B_num parameters are meaningless.

B_seq, carried in the Offset field, shall
indicate the highest numbered contiguous
Block received correctly.

Sync, carried in the T_len field, shall be the
Operation identifier in the sender's Operation
stream where the C-limit value was
determined. Since the receiver can count the
number of Operations sent since this Sync
value, it now knows how many more
Operations it can send without overflowing,
(i.e., overflow may result in the extra
Operations being discarded). Note that C-

working draft - HIPPI-ST Rev 0.1, 11/15/96

19

limit is the minimum value, additional empty
Slots may accumulate during the processing
and propagation time.

B_num shall be the number of the Block
being acknowledged. A value of x'FFFFFFFF'
shall indicate that no complete Blocks have
been received.

Issued – It is intended that a State_Response
be issued by an end device's higher-layer
protocol after receiving State_Requested = 1 in
a DATA Operation, or receiving a
State_Request Operation.

Effect – State information is passed to the
other end of the Virtual Connection.

8.9 End

End allows either end of the Virtual Connection
to terminate a Scheduled Transfer before it has
completed, and to terminate Scheduled
Transfers of unlimited size.

Semantics – End (
Op,
D_id
S_id)

Op = x'0E'

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection. This
S_id value shall not be reused until an
End_ACK is received.

Issued – By the Originating Source or the Final
Destination.

Effect – A Final Destination receiving an End
shall stop sending Control Operations
associated with this Scheduled Transfer. An
Originating Source receiving an End shall stop
sending Control Operations and STUs
associated with this Scheduled Transfer. An
End kills a Scheduled Transfer, but shall not
affect the Virtual Connection carrying the
Scheduled Transfer.

8.10 End_ACK

End_ACK confirms that this end device has
seen, and acted on, the End.

Semantics – End_ACK (
Op,
D_id,
S_id)

Op = x'0F'

D_id shall be the Transfer identifier assigned
by the other end of the Virtual Connection.

S_id shall be the Transfer identifier assigned
by this end of the Virtual Connection. This
S_id value should not be immediately reused
to avoid aliasing.

Issued – By the end of the Virtual Connection
that received the End Operation.

Effect – Acknowledgment that the Scheduled
Transfer has been terminated.

9 Sender detected errors

For Operations that have an expected
response, if the response is not received within
an Op-retry period, then the original Operation
shall be retransmitted to recover from a lost or
damaged Operation. Expected responses to
Operations are:

– RQP_Response to RQP

– Port_Teardown_ACK to Port_Teardown

– Port_Teardown_Complete to Port_
Teardown_ACK

– RTS_Response to RTS

– RTS_Response/CTS to RTS

– End_ACK to End

The Op-retry period is system dependent and
shall be determined by:

– a time longer than the measured round-trip
time through the software path; or

– a long fixed time period; or

– consumption of all of the T_id values; or

– the number of unacknowledged Operations
consumed too many Final Destination
resources.

working draft - HIPPI-ST Rev 0.1, 11/15/96

20

Table 1 – Virtual Connection Operations summary

Operation Op Flags S_count D_Port S_Port Key Bufx Offset B_num

Request_Port (RQP) (from A) x'01' OCP A-limit B-Port A-Port * A-Bufsize A-Key EtherType

RQP_Response (from B) x'02' OCPR B-limit A-Port B-Port A-Key B-Bufsize B-Key *

Port_Teardown x'03' * * D_Port S_Port D-Key * * *

Port_Teardown_ACK x'04' * * D_Port S_Port D-Key * * *

Port_Teardown_Complete x'05' * * D_Port S_Port D-Key * * *
NOTES –

1 – Flag abbreviations are: O = Source_Concatenate, C = Concatenate, P = Persistent, R = Reject
2 – D-Key = Key value the Destination binds to, e.g., D-Key = A-Key when Operation issued by device B.
3 – D_Port = Port number in device receiving the Operation, e.g., D_Port = A-Port when issued by device B.
4 – S_Port = Port number in device issuing the Operation, e.g., S_Port = B-Port when issued by device B.
5 – The Schedule Header parameters that are not shown shall be transmitted as zeros.

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation, and may be used by later Operations

Table 2 – Data transfer Operations summary

Operation Op Flags S_count D_id S_id Bufx Offset T_len B_num

Req_To_Send (RTS) (from G) x'06' CPV * * G_id * * T_len *

RTS_Response (from H) x'07' CR Blocksize G_id H_id * * T_len *

Clear_To_Send (CTS) x'08' C * D_id S_id Bufx Offset * B_num

RTS_Response/CTS x'09' C Blocksize D_id S_id Bufx Offset T_len B_num

Req_To_Receive (RTR) (from G) x'0A' OC OS-Offset G_id Bufx Offset T_len OS-Bufx

DATA x'0B' INSCF S_count D_id S_id Bufx Offset Sync B_num

State_Request x'0C' * * D_id S_id * * Sync B_num

State_Response x'0D' * C-limit D_id S_id * B_seq Sync B_num

End x'0E' * * D_id S_id * * * *

End_ACK x'0F' * * D_id S_id * * * *
NOTES –

1 – Flag abbreviations are: I = Interrupt, N = Notify ULP, S = State_Requested, O = Source_Concatenate,
 C = Concatenate, P = Persistent, F = First STU of Block, R = Reject, V = Data channel assignment
2 – D_id = Transfer identifier in device receiving the Operation, e.g., D_id = G_id when issued by device H.
3 – S_id = Transfer identifier in device issuing the Operation, e.g., S_id = H_id when issued by device H.
4 – Schedule Header parameters that shall be transmitted as assigned in RQP and RQP_Response Operations:

D_Port = Port number of the device receiving the Operation
S_Port = Port number of the device issuing the Operation
Key = Key value assigned by the device receiving the Operation

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation, and may be used by later Operations

working draft - HIPPI-ST Rev 0.1, 11/15/96

21

10. Receiver detected errors

Open Issue – All errors and processing are new -
please review. Please suggest any missing errors.

10.1 General errors

10.1.1 Undefined Opcode

An undefined Opcode value may occur due to
bit errors, or if the sending device is using a
future superset of the Scheduled Transfer
Operations. The Operation shall be discarded
and an Undefined_Opcode_Error shall be
logged.

Open Issue – Should the offending Opcode be logged?

10.1.2 Unexpected Opcode

Most of the Operations require previous
Operations to setup state on each device. If a
device receives an out of sequence Opcode,
(e.g., receiving an RQP_Response without
issuing the initiating RQP), the Operation shall
be discarded and an Unexpected_Opcode_
Error shall be logged.

10.2 Virtual Connection errors

10.2.1 Invalid Key or Port

All Operations, excluding RQP, should have a
Key value that validates the Operation for the
Virtual Connection. Operations with an invalid
key shall not be executed, and an
Invalid_Key_Error shall be logged.

All Operations should have a valid Destination
port value. All Operations, excluding RQP,
should have a Source port value that matches
the state for this Virtual Connection.
Operations with an invalid port shall not be
executed, and an Invalid_Port_Error shall be
logged.

NOTE – Multiple contiguous invalid Key and/or port
values may indicate a problem with the link, or a
malicious host on the network. The supervising
process should be informed.

10.2.2 Op-limit exceeded

Operations that exceed the Op-limit for the
Virtual Connection shall be not be executed,
and an Op-limit_Exceeded_Error shall be
logged.

10.2.3 Unknown EtherType

If an RQP Operation contains an unknown
EtherType, the receiver shall issue an
RQP_Response with the Reject bit set and log
an Unknown_EtherType_Error.

Open Issue – Should the Operation above be rejected
or discarded?

10.2.4 Illegal Bufsize

If an RQP or RQP_Response contains a
Bufsize value that is less than 32 bytes, or is
not a power of 2, then the receiver shall not
execute the Operation, and shall log an
Illegal_Bufsize_Error.

10.3 Scheduled Transfer errors

10.3.1 Invalid id

All Scheduled Transfer Operations, except RTS
and RTR, should have a valid Destination id for
quickly accessing state information for this
Scheduled Transfer. After checking the D_id,
the S_id should match the stored value for this
Transfer. An invalid id shall result in not
executing the Operation, and logging an
Invalid_id_Error.

10.3.2 Bad Data Channel specification

During an RTS Operation, the sending device
declares the lower layer Data Channel that will
carry DATA Operations for this Scheduled
Transfer. Some Data Channels may not be
used for Scheduled Transfers depending on
the lower layer, (e.g., b'00' is not a valid choice
on HIPPI-6400 as it indicates VC0 which is
reserved for Control Operations). The receiver
shall issue an RTS_Response with the Reject
bit set.

working draft - HIPPI-ST Rev 0.1, 11/15/96

22

10.3.3 Concatenate not available

If the Virtual Connection did not specify the
capability for Concatenation, any Scheduled
Transfer Operations on this Virtual Connection
with the Concatenate bit set shall not be
executed.

10.3.4 Block size exceeds Transfer length

If a RTS_Response, or RTS_Response/CTS, is
received specifying a Block size larger than the
Transfer length, then the Originating Source
shall treat the Transfer as a single Block.

10.3.5 Out of Range B_num, Bufx, Offset,
S_count, or Sync

During the CTS, RTS_Response/CTS, DATA,
and State_Response Operations a Block
number may appear that is outside the
calculated number of Blocks for the Transfer. If
an out of range Block number is encountered,
the receiver shall not execute the Operation,
and shall log an Out_Of_Range_B_num_Error.

If a DATA Operation contains a Bufx and/or
Offset that exceeds the buffer range allocated
by the Final Destination for previous
outstanding CTS’s, then the receiver shall not
execute the Operation, and shall log an
Out_Of_Range_Bufx_Error.

If a DATA Operation contains an Offset larger
than the buffer size, the receiver shall not
execute the Operation, and shall log an
Oversized_Offset_Error.

If a DATA Operation without the “First STU of
Block” flag bit contains an S_count that is not
one less than the previous STU (for this
Scheduled Transfer), then the STU is out of
order. The receiver shall discard the STU and
log an Out_of_Order_STU_Error.

If a State_Response Operation is received with
an out of range Sync parameter, the Operation
shall not be executed, and an
Out_Of_Range_Sync error shall be logged.

10.3.6 RTR problem

The RTR Operation should be setup by the
higher layer. If an RTR Operation is received
and a problem occurs, the receiver shall issue
an RTS_Response with the appropriate fields
(including the id from the RTR in the D_id) and
set the Reject bit.

10.4 Other errors

Various timeout errors should be covered in the
higher layer implementation, (e.g., the timeout
associated with issuing a CTS Operation but
lacking receipt of any corresponding DATA
Operations.)

Table 3 – Summary of logged errors

Name Occurs in
Operation

Undefined_Opcode_Error not applicable
Unexpected_Opcode_Error all except RQP
Invalild_Key_Error all except RQP
Invalid_Port_Error all
Op-limit_Exceeded_Error all with Opcode ≥ 6
Unknown_EtherType_Error RQP
Illegal_Bufsize_Error RQP, RQP_Response
Invalid_id_Error all with a D_id
Out_Of_Range_B_num_Error CTS, DATA,

State_Response,
RTS_Response/CTS

Out_Of_Range_Bufx_Error DATA
Oversized_Offset_Error DATA
Out_of_Order_STU_Error DATA
Out_of_Range_Sync_Error State_Response

working draft - HIPPI-ST Rev 0.1, 11/15/96

23

Annex A
(normative)

Using HIPPI-6400-PH as the lower layer

Open Issue – This is new, and just a collection of
random thoughts for now. It will be fleshed out and
polished as time permits.

The data units passed between HIPPI-ST and
HIPPI-6400-PH are STUs.

Somewhere we will have to say something
about the padding, e.g., any padding received
by HIPPI-6400-PH will be passed to -ST. If -PH
required padding in the last micropacket, then it
is supplied by -ST. The length value passed
between -PH and -ST will be the -PH payload
length, i.e., the Schedule Header + data
payload.

-ST will need to supply the ULAs, or some
address that -PH can use to derive the ULAs, to
-PH. EtherType will also have to be passed.

Currently the document is written where -ST can
request which -PH VC to use for data. Do we
want to continue this?

working draft - HIPPI-ST Rev 0.1, 11/15/96

24

Annex B
(normative)

Using HIPPI-FP as the lower layer

Open Issue – This is new, and just a collection of
random thoughts for now. It will be fleshed out and
polished as time permits.

HIPPI Packets will probably map to -ST
Transfers. Hence, we need to expose the -ST
Transfer to the lower layer, where to HIPPI-
6400-PH we just exposed STUs.

Do we need some way to force an error on the -
ST side to map the case of receiving a HIPPI
packet in error?

We can probably do striping based on the low
order bits of Bufx.

working draft - HIPPI-ST Rev 0.1, 11/15/96

25

Annex C
(informative)

Scheduled Transfer example

The following example demonstrates the
Scheduled Transfer Operations. In this example
device X is sending a 4.82 MB file to device Y.

• Boxed equations showing C coding
calculations are shown at the end of each
Operation.

• Fields that contain a * are unused and

transmitted as zeroes.

• Please note for this section that kB stands

for 1024 bytes and MB stands for 1024 x
1024 bytes.

• All hex values that take up fewer bits than

their field have zeros in the upper bits.

• Table C.1 shows all fields and

corresponding values for the Operations
shown below. The Operation description
and table location are correlated by the
numbers in parenthesis.

C.1 Virtual Connection setup

Device Y initiates a Virtual Connection setup
request (RQP) with device X. The Virtual
Connection setup is a dual direction setup and
either device can begin a Scheduled Transfer
after setup independent of who started the
Virtual Connection setup.

Y->X (1)

RQP(S_count: Op_limitY, D_Port: x’0000’,
S_Port: portY, Bufx: BufsizeY (16 kB), Offset:
KeyY, B_num: EtherType)

Y provides its Key, port, Op_limit and Bufsize to
device X. X binds to the well-known port
x'0000' which is used for port setup. Device X
responds to the request with an
RQP_Response.

BufsizeY = 16; /* kB */

X->Y (2)

RQP_Response(S_count: Op_limitX D_Port:
portY, S_Port: portX, Key: KeyY, Bufx:
BufsizeX (4 kB), Offset: KeyX,)

Device X provides device X's Key, port,
Op_limit, and Bufsize to device Y. Y binds to
the KeyY and portY to associate the response
with the above RQP (as opposed to other
RQP's that Y may have initiated).

A dual direction Virtual Connection has been
established and both sides know the other's
Key, port, Op_limit and Bufsize. The Keys are
an authentication value which will stop invalid
Operations, (e.g., an inadvertent
Port_Teardown Operation might destroy the
Virtual Connection.) The port values are used
to map to higher layer protocols and may be
the same mapping used for Internet style ports.
Op_limit gives the destination some flow control
power over Virtual Connection Operations. The
number of unacknowledged Operations sent to
the other device may not exceed Op_limit.
State_Response Control Operations will provide
the a current value of Op_limit and can be
synchronized using the Sync field. The
maximum STU size is determined by the
smaller of the two devices’ Bufsize values (4kB
in this example).

BufsizeX = 4; /* kB */
if(BufsizeX < BufsizeY)
 max_Msg_size = BufsizeX;
else max_Msg_size = BufsizeY;
/* max_Msg_size = 4kB */

C.2 Scheduled Transfer setup

Device X initiates a transfer of 4.82 MB using
the Virtual Connection established above.

X->Y (3)

RTS(Flags: x’02‘, D_Port: portY, S_Port:
portX, Key: KeyY, S_id: idX, T_len:
x’4D1EB8’)

working draft - HIPPI-ST Rev 0.1, 11/15/96

26

Device Y expects the data to be delivered on
Data Channel 2 as specified in the Flags
parameter. Device Y checks the Originating
Source ID (idX) with it’s list of acceptable
devices. Device Y reads the transfer length
size (~4.82 MB) and agrees to begin the
transfer, but because device Y needs time to
pin down buffers, only an RTS_Response is
sent.

T_len = 0x4D1EB8; /* 5,054,136 bytes */

Y->X (4)

RTS_Response(S_count: 5, D_Port: portX,
S_Port: portY, Key: KeyX, D_id: idX, S_id:
idY, T_len: x’4D1EB8’)

Device Y has accepted the transfer by not
setting the reject bit. Device Y chose a nominal
Block size of 5 maximally sized STUs. Device Y
has assigned an ID (idY) which it can use to
quickly index to the correct transfer. All further
Scheduled Transfer Operations will continue to
use the appropriate binding information: Key,
ports, and the ID’s but they are not shown in
the remaining steps of this example.

Both devices calculate the nominal Block
length.

S_count = 5;
nomBlk_len = max_Msg_size * S_count;
/* nomBlk_len = 20 kB */

C.3 Block 0 transfer

Device Y sends a Clear-to-Send Operation
once it has finished allocating resources for the
transfer.

Y->X (5)

CTS(Bufx: x’320’, Offset: x’400’, B_num: x’0’)

The CTS gives us the Destination's buffer index
(Bufx) and the Offset from which to begin filling
the Bufx. The Scheduled Transfer Operations
concentrate required complexity on the
Originating Source (device X in this case). All
Block sizes must be the same except for the
first (which will be short by the Offset value) and
the last (which will finish off the transfer). In this

example, the first block will be 19kB (20kB
Block size - 1kB Offset). The 1kB Offset will
force an offset between the two devices and
hence tiling will be mismatched (See figure
C.1).

Bufx = 0x320;
Offset = 0x400; /* 1 kB */
num_Blks = ceil((T_len + Offset)/nomBlk_len);
/* num_Blks = 247 */
Blk_len[0] = nomBlk_len - Offset;
/* Blk_len[0] = 19kB */

There are two methods for the Originating
Source to create STUs for sending to the
Destination. All STUs should be the maximum
STU size (4 kB) except when the STU length
would overrun: a Destination buffer boundary,
a buffer boundary, or a transfer length.
Additionally, if a Originating Source engine
does not have an efficient buffer-gather
mechanism, STUs may be clipped by the
Originating Source buffer boundary. This
example assumes the more efficient Originating
Source capable of sending parts of at least two
buffers in a single STU. Figure C.2 shows the
tiling that would occur when STUs are also
clipped by Originating Source buffer
boundaries.

X->Y (6-10)

DATA{length}(Flags, S_count, Bufx, Offset,
B_num)

DATA{x’1000’}(x’80’, x’4’, x’320’, x’400’, x’0’)
{4kB STU at Offset 1kB}

DATA{x’1000’}(x’00’, x’3’, x’320’, x’1400’, x’0’)
{4kB STU at Offset 5kB}

DATA{x’1000’}(x’00’, x’2’, x’320’, x’2400’, x’0’)
{4kB STU at Offset 9kB}

DATA{x’C00’}(x’00’, x’1’, x’320’, x’3400’, x’0’)
{3kB STU at Offset 13kB}

DATA{x’1000’}(x’04’, x’0’, x’321’, x’0000’, x’0’)
{4kB STU at Offset 0kB}

As can be seen in this example, the Originating
Source does most of the work to align the
Buffer regions in the Destination. Figure C.1
shows how the first Block fits into Y's Bufx
regions. The Originating Source sends the

working draft - HIPPI-ST Rev 0.1, 11/15/96

27

largest STU size until it must account for the
buffer boundaries on the Destination.

The last DATA Operation contains the
State_Requested flag which triggers device Y
to update the Op_limit and acknowledge the
last block received. Each of the DATA
Operations carries a synchronization value in
the T_len parameter which the
State_Response will echo so device X can
synchronize it’s Op_limit parameter with the
number of Operations that have been sent.

Y->X (11)

State_Response (S_count: C-limitY, T_len:
SyncX+4, B_num: x’0’)

The State_Response contains an updated
Op_limit value in S_count called C-limitY.
The synchronization value is contained in
T_len and a Block number acknowledging
this block and all lower numbered Blocks.

4k

4k

4k

3k

4k

4k

4k

4k

3k

4k

X Y

4

3

2

1

0

Bufx
x’320’

Bufx
x’321’

M_count

Figure C.1 – Buffer tiling

4k

4k

4k

4k

3k

4k

4k

4k

3k

4k

X Y

5

4

3

2

0

Bufx
x’320’

Bufx
x’321’

M_count

1
1k

1k

Figure C.2 – Alternate buffer tiling

C.4 Block 1 CTS

The following CTS sends an Offset and Bufx
that should match where the Originating Source
ended the last Block. Though this is the most
likely case, the standard does not require the
next Block’s Bufx or Offset to sequentially follow
the previous Block. Indeed the destination
buffer pool may be reusing Bufx’s that have
already been used. The only requirement is
that a Destination does not give a CTS for
currently outstanding buffer regions.

Y->X (12)

CTS(Bufx: x’321’, Offset: x’1000’, B_num:
x’1’)

C.5 Block 246 transfer

The Scheduled Transfer is at the last Block.

Y->X (13)

CTS(Bufx: x’453’, Offset: x’2000’, B_num:
x’F5’)

The last Block is only 16.7k in length, but
finishes off the transfer.

X->Y (14-18)

DATA{length}(Flags, S_count, Bufx, Offset,
B_num)

working draft - HIPPI-ST Rev 0.1, 11/15/96

28

DATA{x’1000’}(x’80’, x’4’, x’453’, x’2000’, x’F5’)
{4kB STU at Offset 8kB}

DATA{x’1000’}(x’00’, x’3’, x’453’, x’3000’, x’F5’)
{4kB STU at Offset 12kB}

DATA{x’1000’}(x’00’, x’2’, x’454’, x’0000’, x’F5’)
{4kB STU at Offset 0kB}

DATA{x’1000’}(x’00’ x’1’, x’454’, x’1000’, x’F5’)
{4kB STU at Offset 4kB}

DATA{x’02B8’}(x’04’, x’0’, x’454’, x’2000’,x’F5’)
{696 byte STU at Offset 8kB}

The last DATA Operation requests a
State_Response Operation. Though the
State_Response in this example acknowledges
the last Block, a Final Destination may require
more time to finish buffering the Block and
might only acknowledge the previous Block. In
that case, device Y may wait and send a
State_Request Operation and receive another
State_Response acknowledging reception of
the last Block.

Y->X (19)

State_Response (S_count: C-limitY, T_len:
SyncX+E49, B_num: x’F5’)

C.6 Ending the Virtual Connection

Either side can end the Virtual Connection and
free all resources associated with the Virtual
Connection.

Y->X (20)

Port_Teardown(D_port: portX, S_port: portY,
Key: KeyX)

X->Y (21)

Port_Teardown_ACK(D_port: portY, S_port:
portX, Key: KeyY)

Y->X (22)

Port_Teardown_Complete(D_port: portX,
S_port: portY, Key: KeyX)

The Port_Teardown is a three-way handshake
that decreases timeout dependency for
releasing resources. The device sending the
Port_Teardown_ACK can release all resources
upon reception of the
Port_Teardown_Complete with no worry about
lost STUs in the network.

